jump to navigation

Cap and Trade: A Tangled Web of Good Intentions and Bad Policy – Part 2 October 29, 2009

Posted by Michael Hoexter in Efficiency/Conservation, Energy Policy, Green Building, Green Transport, Renewable Energy, Sustainable Thinking, Uncategorized.
Tags: , , , , ,
2 comments

In the first part of this post I identified 10 features of cap and trade, the favored climate policy of many policy elites at this point in time, that make the policy ineffectual.  I outlined how cap and trade was sold to America and the world based on faulty assumptions as well as its superficial political appeal to the then Clinton Administration.  Contrary to the story told in climate activist and sympathetic policy circles, cap and trade has been comparatively ineffective as a means to reduce emissions of either SOx or GHGs.  I argue that this is a structural problem with cap and trade, not a mistake in implementation.

The Gulf Between Gutlessness and “All the Guts in the World”

fishgamewardens

A permit system requires its enforcement arm, like these fish and game wardens. The actions of whatever "enforcers" are instituted via a cap and trade system would tend to seem arbitrary given the way the auction and trading system works. These enforcers would have to compound the misery of actors that will already have "lost" on the permit markets (Photo: Debra Hamilton)

Cap and trade is a hybrid policy, the mixture of a price mechanism and permit regulation.  In theory, the three “motors” of cap and trade are the economic pain caused by having to buy permits (or the anticipation thereof), the profit gained by market participants in exploiting the permit and pollution troubles of others, or the prospect of running out of permits and being subject to some penalty inclusive of actual “police action” on the part of regulators.  As with any permitting system, permits are meaningless without the threat of, potentially, monetary and criminal penalties.  For instance, fish and game wardens need to be able to stop hunters and fishermen from taking animals for which they do not have permits.

However, cap and trade systems hide and, it appears infinitely, postpone the moment where regulators would have to essentially shut down the operations of various industrial or power generation facilities because they no longer possess permits to pollute (which they would have to do to operate using their current technology).  For instance if a financially troubled power utility or plant operator ran out of permits on November 5, to meet the cap regulators would have to shut down one or more power plants until January 1.  This might mean blackouts and brownouts to homes, businesses and, of course, hospitals.  It would therefore take “all the guts in the world” for a regulator or government to enforce the cap, standing down the cries of people who will have to live with no or extremely unreliable electricity.  Yes the notions of “banking and borrowing” permits are meant to reassure system users that this day of reckoning will never come.  Yet this process undermines the power of the permits and the firmness of the cap.

Furthermore, at the point when this theoretical moment of enforcement might occur, the net effect would actually show the regulators/government in a very negative light because punishment might come as a consequence of a lack of “clever” permit-market behavior on the part of the power plant operators.  Their power plants may be no more carbon intensive than the next but they may simply have been outfoxed by other permit buyers or various manipulators of the permit market.  In this case, the punishment will seem arbitrary.

So we can now understand the design and behavior of the designers of real existing cap and trade systems a little better by recognizing this disjuncture between the  lax disbursement of permits (Kyoto/EU-ETS and current Congressional bills), the various softening and smoothing mechanisms (banking and borrowing) and the need for some kind of real enforcement of the cap.   It would subvert the politics of the policy to actually meet the cap through the harsh regulation that would almost certainly never happen or would be largely meaningless within the cap and trade framework.

While regulatory and political guts will be required to meet the climate change challenge, the imposition of harsh measures should be seen far in advance to allow adequate time for polluters to take action to cut emissions.  Cap and trade’s framework does not allow for this type of lead-time before administrative measures are taken.

True Belief in Markets vs. a Baroque Policy Mess

As you might glean from how I write about these matters, I am no market absolutist nor believer in the efficient market hypothesis (EMH) which assumes exclusively rational information processing by market participants in aggregate.  I think it is more reasonable to assume that people can be both economically rational and economically irrational or can alternate between the two at different times or in different contexts.  Economists are also coming around to realizing how central irrationality is in our economic behavior:  there has now been about a decade of behavioral economic research as well as the coming to grips with the fact that our recent crash was in part caused by a belief in the almost total predominance of rational, utility-maximizing economic behavior.

price_tag_pic

In economic theory, people are thought to use price as the key decision criterion for making purchases. From these price tags for vodka, consumers probably will be using the differences in prices as a guide to the quality or social status value of the vodka or its ability to be wet and alcoholic at little sacrifice to them, or some compromise between price and product attributes. (Photo: Jayd Tags)

Whatever the balance of rationality and irrationality in human economic behavior, cap and trade (or carbon taxation/fees) with good justification attempts to mobilize the economic rationality of individual market actors in the service of climate protection by introducing a carbon price that will influence procurement and operations decisions.  Rational economic man (or woman), according to the theory, only needs the information of price to make rational, optimal decisions.  In cap and trade, the carbon price and market is supposed to be the link between merely pro-forma climate action in the form of permit giveaways/postponement of action by regulators and the theoretical, never-to-be-activated harsh punishments for exceeding the cap.  Polluters are supposed to know that they are in trouble when they start paying more and more for polluting, sending to them a signal, the price signal that they need to change their operations.  Rather than the impingement of some set of rules upon the company’s operations, the price is going to tell that economic actor “how much” it will be worth it for them to do something, so they can make an rational choice among a range of options.

The most productive use of a price signal will be if firms anticipate the economic pain caused by the signal before it gets expensive for them; once they are in trouble and overpaying for permits they will have less of an ability to make expensive long-term investments, especially if they are an emission-intensive business like power generation or cement making.  With cap and trade, there may be sudden surprises in the carbon markets which will put firms into trouble even with adequate planning.

louis-xiv-furniture

The Baroque visual style emphasized curves and flourishes, like this side table. In the area of climate policy, too many curves and flourishes in policy leave hiding places for footdragging, corruption, and unearned profits, weighing down policy when it needs to be fleet and effective. Our stylistic preferences are secondary to getting the job done.

I’ve already outlined how flawed cap and trade is in generating the price signal due to the variability of the carbon price that results both via auctioning and via permit trading.  In both cases there will be a lot of market “noise” related to how much people think something is worth rather than what it is worth fundamentally in terms of the climate.  The “how much” will be almost impossible to calculate accurately under cap and trade as conceived and as urged by climate action groups that believe in cap and trade with all permits auctioned off as the gold standard of climate regulation.  This will make investment decision making tools like net present value difficult to use as you cannot calculate the negative cash flows into the future that are attributable to the carbon price.  This is not because net present value (NPV) is more environmentally insensitive than any other investment tool: it’s just sloppy policy-making to defeat the purpose for which you are instituting a policy!  Cap and trade would have to invent its own more baroque micro-economics and corporate finance tools that will always be more inefficient and fault-prone than using a simple price signal and NPV.

So if true belief in markets and economic rationality of individual market actors is fundamental, then a carbon tax or fee that is correlated directly with the amount of carbon or global warming potential (dealing with more powerful greenhouse gases than carbon dioxide) emitted is the clearest, most predictable price signal.  Cap and trade’s baroque double decker market structure is like a climate policy that has been thought up by an overeager 5-year-old who gleefully stacks markets on top of markets because it seems more “market-like”.    Having one “meta-market” emit the carbon price to the real market for carbon emissions reduction solutions is a bad idea.  An excess of markets in this case does not encourage rational economic behavior on the part of individual market actors.

“It’s All that We Have”:  Making Do is not Good Enough

A number of commentators, bloggers, and politicians critical of the state of climate policy nevertheless hang on to cap and trade.  Some agree with some of my criticisms while others might find my foregoing criticisms gratuitous or simply giving aid and comfort to climate deniers.  Or, even if they are frightened of the monumental hand-off of responsibility that is contained within the cap and trade system, they might feel that so much political capital has been spent on cap and trade that it must be defended as the embodiment of climate policy itself.

Below, I will suggest that in fact we have a wealth of choice in the area of climate policy, almost all of which will be more effective and efficient than cap and trade.  For one, governments around the world including the Obama Administration are taking action in other areas that do not deal with carbon pricing or trading of permits or credits/offsets.  You could say that governments that openly advocate a cap and trade system might be seen as also hedging their bets.  Secondly, it will be fairly easy to replace cap and trade with an ensemble of different measures or a carbon tax with any number of features.  If history is any guide, other countries have implemented a carbon tax within months rather than the years long efforts to install cap and trade systems.

It pains me that so many people many of them good-hearted and well-intentioned have expended political capital and reputations on such a faulty instrument.  In their own defense, depending on their social scientific or business backgrounds, they could not necessarily have known differently.  However, that is no reason to stay with an instrument that has a high probability of gumming up the wheels on climate action rather than speeding it up.

Before describing alternatives to cap and trade, I want to first outline what I think the tasks are that the policy needs to address.  Without a common vocabulary for these tasks, stripped of bias towards a particular policy instrument, you, the reader, won’t be able to evaluate whether these are substantially better than what we have already.  In most cases I am not reinventing the wheel, but simply observing and compiling what I see is out there already.

The Fundamental Challenge of Climate Policy

The fundamental challenge facing governments, climate activists, green-oriented businesses, and concerned citizens is a neat intersection between a massive policy challenge and a massive political challenge of the early 21st Century.  Policy and politics are not always so closely intermingled but in this case they run for historical reasons very closely together.

Instituting cap and trade rather than more effective policies is a bad idea spawned of an era in which government was supposed to become more “market-like” in all matters.  We have discovered in so many areas of life that this philosophy of government is flawed, despite continuing political disagreements around this issue in governments around the world.  Our current generation of politicians got elected by taking one stance or another (but mostly one stance) on the either/or proposition of whether government or markets were “better”.  Markets unregulated, as it turns out, encourage short term thinking and satisfaction of immediate appetites.  Fortunately or unfortunately, to face the future threat of climate change, a revision of government’s distinctive place vis-à-vis regulation of markets and our own appetites is required.

Climate policy has the unenviable task of

  1. saying “stop” to our impulses to overuse fossil fuels and overexploit the world’s forests and soils,
  2. directing, under constant political attack, substantial streams of public and private investment to building a new energy and energy-use system and
  3. changing our patterns of land use to fix more carbon in plants and soil.

This places government, and government is the only instrument up to the task, at loggerheads with citizens’ and businesses’ impulses to use more and more energy (and non-renewable natural resources), as cheaply as possible with a disregard for the negative consequences.  While ideally such policies would enact a form of “aikido” on our wishes, using the momentum of our wants for more and better stuff to instead be used to transform society for good, there still needs to be a firm boundary and governmental “center of gravity” that is clear to all (otherwise it cannot perform aikido on anything).  In the end, what is required is the return of government’s legitimate role and moral authority to set this type of reasonable limit and redirect energies that would otherwise go elsewhere.

Radar_gun

Police are not generally appreciated for catching speeders; to get caught speeding almost always feels like an injustice to an individual driver. Still, the net effect of fairly enforced speeding laws makes driving a safer experience for all drivers. Government needs to be accorded the same legitimacy with regard to curbing GHG emissions in order for there to be an effective climate policy of any description. (Photo: Sgt. Lek Mateo)

The analogy of speeding on the highway can bring this closer to our personal experience.  Without traffic cops, many of us, including myself, would drive too fast, increasing the possibility of fatal accidents; furthermore automakers have tended to put whatever mechanical efficiency gains that come from among other devices, turbochargers, into making cars more powerful and “fun to drive” than into gains in mileage.  Yes, there are those of us with a conscience or without the interest in driving fast but we cannot count on these forces alone to curb fast driving, especially given the powerful automobiles to which we now have access.  The police who catch speeders are not very popular but, if they avoid corruption and are not subject to absurd ideological attack, they maintain moral authority and can do their job.

Fossil fuel use (or wanton deforestation) is similar to the propensity to speed in that it offers us and our economy an easy way to satisfy our wants without regard for the long-term consequences.  Fossil fuels are notably energy dense and we in most developed or in oil-rich countries do not pay nearly enough for them given their social and environmental costs. In an uncharacteristic moment of clarity within his Presidency, George W. Bush put his finger on it when he said that “America is addicted to oil”.  As in addiction, only firm limits and sometimes harsh measures are able to stop the addict from re-using the drug he or she desires.  The authority of government to intervene (double entendre!) in the domestic economy has been over the past 30 year undermined by an ongoing political barrage that suggests that government has less legitimacy and moral authority than the market.  Cap and trade is an effort to wrap government in the faux moral authority of the market, as promoted by the market fundamentalist creed of the last 3 decades.  The market unregulated, as it turns out, is amoral, not caring that much about long term consequences.  Markets are not “bad” or essentially immoral, they just are tools that lately have been called on to do tasks to which they are ill-suited.  As even Alan Greenspan now attests, they have been fundamentally misunderstood most notably by him and by many others.

Especially in the US but also abroad, governments, in order to do their work, must re-establish moral legitimacy in many areas of domestic policy which have been thrown into question by our decades-long experiment in market fundamentalism.  The substance of the politics surrounding cap and trade is largely about the moral authority of government to restructure our energy system and secondarily about the legitimacy of natural science.  The content of this moral legitimacy is that government can when functioning well, represent the general or common interest in making and enforcing rules, collecting taxes, and spending that revenue for the purpose of maintaining and improving the future viability of the nation. Even more so in the area of climate change, which will mean over a period of a decade or two, dramatic changes in at least three sectors of our economy, governments’ moral legitimacy needs to be well established to effect whatever policy is chosen.

Cap and trade’s “prospectus” (a.k.a. political sales pitch) suggests that government can after declaring a “cap” essentially recede into the background, while the “hand” of the permit trading market does its work.  Its superficial political attraction is that it reinforces the pre-existing “rap” that government is “bad’ or ineffective and the market is “good” and effective.  However, to work in any shape or form, climate regulation and policy, including cap and trade systems such as they are, is going to need government action in spades.  So, cap and trade sets up its advocates for a long-term political defeat:  even if a weakened form of it passes, people will ultimately start to wonder why there is so much government involved in cap and trade (and so ineffectually at that).  Maybe its advocates believe that “people know” that cap and trade is really just another government regulatory program and won’t feel betrayed; given the state of civic understanding of government’s role, I believe they are sorely misinformed.

Ultimately the leaders of government(s) are going to need to take responsibility for protecting their people and the environment from substantial degradation via curbing our own emissions of greenhouse gases.  The language and parallel institutions of cap and trade interfere directly with the process of by which government leaders would take responsibility, suggesting that automatic processes will “take care of themselves” via the invisible hand of the carbon permit market.  I have demonstrated that such an invisible hand will play tricks with the policy itself compromising its effectiveness.  Both the policy in its pure form and even more so efforts to curb its tendencies will create a baroque structure that does not work directly and efficiently on the basic tasks that are required to reduce carbon emissions rapidly within a decade.

The Basic Elements of Climate and Energy Policy

To open up the field of alternatives to cap and trade, as well as understand cap and trade better in context, we need to understand what the generic tasks of any climate and energy policy would be.  A comprehensive climate and energy policy has most of these elements independent of  policy instrument choice:

  1. Disincentives for (or rules against) the use of fossil fuels, leading either immediately to switching to virtually carbon neutral fuels/energy sources or vastly more efficient use of fossil fuels prior to switching to carbon neutral energy.
  2. Incentives for private investors to build carbon neutral electric generation and carbon-neutral energy storage as replacements for fossil electric generation.
  3. Incentives for vastly more efficient energy use of all types in transportation, buildings and industrial processes (or conversely disincentives to “waste energy”).
  4. Provision of or facilitating the financing of site- and regionally-specific public goods that lead to carbon neutral energy use (electric transmission, electrification of railways, build out of railways, electric vehicle recharging networks).
  5. Revenue sources for financing public goods and incentive programs that enable a society to cut emissions.
  6. Incentives for maintaining and increasing carbon sequestration in land use in agriculture, silviculture and in forest preserves.
  7. Disincentives for (or rules against) the release of sequestered carbon in land, vegetation, and sea.
  8. Reduce black carbon emissions via introducing emissions controls or alternatives to biomass combustion or other black carbon sources.
  9. Develop, identify and institute standards for lower- and zero-emissions technologies and processes.
  10. Generate regional and national plans based on better and best practices to curb emissions
  11. Fund basic climate and energy research

There is no single policy that does all of these tasks well nor will some policy package address all of them.   We see that cap and trade is an attempt to address a number of them with a single instrument, most particularly numbers 1, 3, 5, and 6.  As we have indicated cap and trade’s inherent laxness and unclear carbon price signal interfere with 1 and 3 (energy efficiency, fuel switching, and restriction of fossil fuel use).  It does offer to join these efforts with 6, which has spurred interest in the developing world.  Again there have been difficulties in establishing whether funded carbon sinks/offsets needed the funding and also run into problems with 7, the release of carbon once sequestered.  Would development projects need to pay the money back if the forest they are leaving to grow is cut down by them or someone else?

The temptation of policy makers, in their first take on a climate policy to lump a number of concerns together is understandable, especially if climate policy, in relative terms, has been a low priority.  However cap and trade has been extremely cumbersome to set up and ineffective or marginally effective in each of these areas with a high probability of continued problems given its long list of inherent flaws.   Moving to or at least seriously considering any one of a number of alternatives is advisable given cap and trade’s ability to block other policies and clog governmental channels.   Furthermore translating our thinking about climate into its terms limits our ability to imagine other scenarios that will work much better.  In every one of these categories there is a more effective instrument than cap and trade, meaning that we of necessity must move to a multiple instrument platform because of cap and trade’s lack of effectiveness as well its (and any instrument’s) lack of comprehensiveness.

I will offer here (in the next part) two main directions, one mainstream and the other “heterodox”, that both will achieve more quickly and easily emissions reductions than cap and trade.

Cap and Trade: A Tangled Web of Good Intentions and Bad Policy – Part 1 October 26, 2009

Posted by Michael Hoexter in Efficiency/Conservation, Energy Policy, Green Transport, Renewable Energy.
Tags: , , , , , ,
3 comments

I favor some of the more aggressive actions to avert climate catastrophe, actions which nevertheless do not compromise the continuity of human life and well-being. The climate which enabled our evolution as a species and the societies upon which we depend has almost no price attached to it. Averting this calamity, if we can, is the moral equivalent of war. As such it deserves the investment and political priorities that are accorded the military during a war, though the necessary moral and climate-science arguments for this level of investment have not been made clearly by leaders, especially in the US.   In our Great Recession, a forward-looking policy to counter climate change would have much needed economic benefits and lay the foundation of the new economy that we are supposed to be building.

Unfortunately, the mental “real estate” of climate activists and politicians has been captured by a monumentally bad idea, a misapplication of an environmental regulatory system that encourages delay and irresponsibility in climate action rather than changing the course of our society’s use of energy and land. Whatever urgency is felt popularly or by leaders, the institutions that will arise from the cap and trade policy framework have a good chance of actually blocking more effective action on climate (more straightforward system of rules, incentives, disincentives, and direct investment), which makes the work of exposing its flaws not simply the matter of my or someone else’s political or economic preferences but one of life and death for future generations and the ecosystems upon which we depend. An unquestioning herd mentality has taken over and encouraged even some of our best social scientific minds, including Nobelist Paul Krugman, to issue statements of support for a policy inspired by an outdated political and economic fashion of which Krugman is himself one of the leading critics.

Somehow a connection is not being made between the monumental collapse of our financial systems over 13 months ago and the design of the twenty-year-old policy instrument to which so much unearned credence has been given. Fundamental to cap and trade is the hand-off of key responsibilities and agency (the ability to act) for cutting carbon emissions to a carbon derivatives trading market, an unnecessary gift to the hyper-caffeinated and overgrown trading sector of finance. Just this week, critics of the Obama Administration’s earlier weaker financial regulatory efforts are now feeling somewhat vindicated in seeing that the Administration is now stepping up its efforts to rein in financial engineering and trading-dominated finance. It is utterly baffling that people who are intelligent enough to design or just understand an over-complicated policy instrument like cap-and-trade have not made the connection between the origins of cap and trade and the vagaries of our financial system. For them, the cap and trade instrument is still wrapped in the mystique of trading-based markets, which outside the climate community have lost much of their appeal.

It is an open secret among people who actually work now in cutting emissions by implementing energy efficiency and renewable energy projects that cap and trade is at best a holding pattern if not a monumental roadblock to pushing ahead with deployment, investment and research in emissions reductions themselves. These voices, generally excluded from the political discussion, contradict the “line” that, for instance, the upcoming legislation from the US Congress centered around cap and trade is a “clean energy jobs bill” and is the very heart of a green economy. While cap and trade is complex, these criticisms come not from a lack of economic or even political understanding but from a realistic appraisal of how actual lower-carbon technology implementation decisions get made, an elementary business process which seems to have escaped study by the policy’s designers. Cap and trade is not too stringent or too effective but not nearly effective enough.

The fundamental problem with cap and trade is that it placates government leaders and activists with manifest good intentions while undermining the effectiveness of the only instruments which could realize those good intentions. Cap and trade inserts a layer of obfuscation and indirection into governments’ ability to make rules, implement programs, build public works, and levy taxes in a fair and transparent manner.   On another level, it has a faulty microeconomics, inserting uncertainty about the value of emissions reductions to the businesses that will actually cut emissions via responding to the policy.  While working with ineffectual or superficially “P.C.” policy instruments might be acceptable in other matters, in climate policy the massive open-air experiment that has been cap and trade over the past 15 years is an unfolding catastrophe. It is not unlike the Trojan Horse, in that cap and trade appears as a gift, yet gives the vandals or just climate do-nothings command of the citadel. Tragically, the barrage of criticism and invective from the loony political Right or from professional contrarians who have lost a sense of proportion, distracts well-intentioned lawmakers and their supporters from seeing the flaws of their chosen policy.

Cap and Trade in Summary

Briefly, the cap and trade systems under discussion are permit trading systems that attempt to limit emissions of greenhouse gases by allowing polluters to emit greenhouse gases to the amount for which they possess permits. Permits are either given away or auctioned off up to the amount of a society-wide or economic sector-wide “cap” determined by regulators, which is supposed to be “tightened” (meaning reduced) over the years, leading to the decades long equivalent of a game of musical chairs. Regulators, as is planned, will in the future remove “chairs” by reducing the number of permits available to the point where by 2050 there would only be permits for 20% of 1990 greenhouse gas emissions. The “trade” part happens when companies have excess permits, because of having polluted less or owning unneeded permits. They can sell these excess permits for a profit to companies that pollute more than the amount of permits that they own. There have been various attempts to re-brand cap and trade with a name that sounds somewhat less shady, like “market-based cap” etc..

Derived from the speculations of the economists Ronald Coase (1960) and Martin Weitzman (1974), cap and trade, also called emissions trading, was invented in the US in the late 1980’s and early 1990’s during the first Bush Administration as a way to avoid issuing  so-called “command-and-control” environmental regulation by government (telling industry exactly what to do and monitoring it) or direct monetary penalties like pollution taxes. The original cap and trade system for acid rain pollution which is still in place in the US, has been declared responsible for reducing by 40% sulfur emissions (SOx) by coal-burning power plants in the period 1990-2004. However, during the same time period, European and Japanese regulators have been markedly more successful using traditional regulations in cutting the emissions of these same pollutants (65%) from power plants, revealing the cap and trade system to be the equivalent of a regulatory stunt: “See! Look Ma…no hands!”  In a 2007 review of  the results of emissions trading, Gar Lipow has led the way in calling into question the sales pitch for cap and trade.

As an example, the highly coal-dependent, heavily industrial Czech Republic went from in 1990 emitting two times the amount of SOx per capita as the US to in 2004 emitting approximately one-half the amount of SOx per capita as the US (UNECE report page 68).  While most post-Communist societies have decreased all types of emissions substantially due de-industrialization, economic hard times, or adoption of modern emissions controls, the Czech Republic had in 2006 twice as much industry as a percentage of GDP and uses as a percentage of total energy supply twice as much coal as the US, revealing the US to be far from a leader in reducing acid rain pollution.   Furthermore, the cap and trade system’s success has been aided in America by the accessibility of low-sulfur coal at an equivalent price to coal with higher sulfur content; Wyoming’s Powder River Basin coal deposits have been the “wind beneath the wings” of the US anti-acid rain program such as it is.   From the perspective of these results, holding out the SOx regulatory system of the US as the pivotal policy to save the planet stretches credulity.

Cap and Trade and Greenhouse Gases

The road to applying cap and trade to climate change had a number of twists and turns. Before implementing a climate policy, in 1993 the newly-formed Clinton Administration had attempted to institute a BTU energy tax as a means of raising revenue but was rebuffed by Congress. The Administration considered this experience along with its frustrated health care reform effort a major early defeat that shaped later thoughts on policy and political strategy; these fateful events 16 years ago unfortunately have had inordinate effect on US and world climate policy since then.

The Clinton Administration subsequently in the negotiations surrounding the Kyoto treaty to limit greenhouse gas (GHG) emissions favored “flexibility” and helped engineer a consensus in favor of cap and trade and cross-border emissions swaps.   While a “wonky” intellectual interest in emissions trading may have played a role, the Clinton Administration also thought that this policy would have domestic political benefits as a means to circumvent a policy that had the “tax” label or appeared to tell industry what exactly to do (direct regulation).   Using cap and trade also was an effort to “reach across the aisle” as the first cap and trade system had been implemented under the Presidency of the first George Bush.  In other areas of the economy, in tune with economic fashion of the 1980’s and 90’s, the Clinton Administration was as fascinated by markets as its Republican predecessors and, additionally, had a penchant for policy complexity, within which the notion of using a market to regulate other markets seemed almost commonsensical.

In 1998, despite pressing for cap and trade as the international GHG regulating instrument, the Clinton Administration compromised with an intransigent US Congress by not ratifying the Kyoto treaty, insisting that the developing world must be included in the regulation of greenhouse gases.  The elaborate political ploy in using cap and trade failed as far as US politics were concerned.  Other industrialized nations, most notably Europe and Japan, and the relevant UN bureaucracies continued developing the carbon market and cap and trade concept without direct US involvement during the later Clinton and Bush years.  The Protocol went into effect in most industrial countries in 2005 after a lengthy period of negotiation and set-up.

While emissions have been cut in some countries, the experience of the first four years of international carbon regulation via cap and trade have not shown the instrument to be particularly capable of effecting meaningful reductions in carbon emissions. In the European Union Emissions Trading Scheme (EU ETS), affiliated with Kyoto, the effects of the economic downturn or a future upturn are making any evaluation of the effect of cap and trade on emissions a near impossibility.   The use of carbon offsets originating in developing countries will further cloud the data.    In its initial 3 year period (2005-2007), GHG emissions in the EU ETS went up by 1.9% with wide nation by nation variation ranging from Sweden (-20%) to Finland (+28.5%).   Multiple reasons are possible for the wide span between countries and more generally many self-issued excuses are rampant because of the acknowledged complexity of the system; this was a “run-in period” etc.  In 2008 there is missing data but it appears that a combination of the economic downturn and high energy prices (not necessarily attributable to a carbon price) led to a fall of GHG emissions of 3% from 2007 in the EU, which the managers of the EU-ETS attributed to the carbon “price signal”  generated by the trading scheme.   In the same period (2007-2008) without a national GHG cap and trade system, US emissions fell 2.8% for similar reasons, contradicting the claims of EU ETS managers that cap and trade had an effect in 2008.   The net contribution of carbon trading to emissions reductions is still, 12 years after Kyoto, indistinguishable from “noise” in the data.

While it is universally agreed that “errors” were made in giving away too many permits in the initial round of Kyoto/EU-ETS, it is a strange repeat of these supposed errors that the now proposed US cap and trade system being debated in Congress will as of this writing also give away most of its permits for about the next decade. Furthermore the use of offsets, the (supposed) emissions cuts by others that are purchased on an international market because they are cheaper than internal investments, has been controversial both in design and in implementation.  Whatever one’s view on carbon arbitrage (shopping around for the cheapest reductions around the world), it is universally agreed that offsets reduce pressure on the biggest polluters to take action now in reducing their own emissions. The notion of cap and trade being a system of indulgences for fossil fueled economies is further reinforced by this disturbing propensity of real-existing, as opposed to theoretical-ideal, GHG cap and trade systems to undermine themselves or soften their impact on the biggest sources of emissions.

In Copenhagen in December at COP15, the successor to the Kyoto process (2005-2012) is to be designed and most of the climate community is moving towards a new cap and trade-based treaty that activists hope will be more vigorous than the previous one. Yet the trenchant criticisms of cap and trade systems that emerge from economists, most notably William Nordhaus, and concerned economic actors on the ground are brushed aside by those congregated at these events who seem to feel that their good intentions can substitute for conscientious analysis. For instance, almost every economist, including cap and trade supporter Sir Nicholas Stern, has had to agree at one point or another that carbon taxation is more efficient than the baroque emissions trading systems we have built.

Furthermore, we in the US are put in the difficult position of being a laggard in a process that is based upon our own bad idea, and upon which we really never followed through in its original form. In a way, the Obama Administration is, as it may be doing with its Afghanistan policy, put in the position of fighting the last Democratic President’s war rather than designing a more future-looking policy; having defined the political choice as cap and trade or, as the Republican opposition to Obama would have it, no strong action on climate change, the Democrats and Obama should instead be looking for the way to a more effective climate policy. The cap and trade framework, a product of some tortured political logic from the Bush and Clinton years, has “captured” the discussion, limiting thought and discourse on what are the available instruments to avert this catastrophe.

In its defense, permit trading may be appropriate as a distribution mechanism though not a magical cure-all in certain environmental arenas, most particularly the regulation of fisheries. In many nations now “catch-shares” are allocated to fishers who can trade these shares with other fishers. However, the ultimate success of even this appropriate use is achieved by the government setting limits on the fishing industry, not by yielding to some invisible hand of a fabricated market: the total amount of the permits allowed would need to be determined beforehand with reference to study of the fishery by biologists unaffiliated with industry and fishing limits would need to be enforced by government regulators, albeit according to the number of permits that the fisher owns. The appropriateness of permit trading as a distributional mechanism in this instance is that

  1. one is trying to calibrate exploitation of a natural resource at a particular level rather than reduce it in one direction (lower is almost always going to be better with GHG emissions for the foreseeable future.
  2. The permit trading is a just a new layer inside an existing historical market for fish which have an intrinsic positive economic value for people but are not arbitrarily created by people (it’s “inelastic”).  Pollution permits are on the other hand entirely an arbitrary creation of government(s), so the determination of a pollution price via the market is similar to playing a game of “guess what’s on my mind.”
  3. A simple intuitive equation can be made by all fishing market participants between a permit and a tradable object of recognized economic value, i.e. the fish.

All types of permit trading, whether of emissions or other, have provoked ethical controversy with regard to the selling of ownership shares to a public or natural common good. Despite these reservations, in the case of fisheries, fishers already have a longstanding tradition of claiming ownership of what they catch so permit trading represents not much of an innovation in resource ownership in fishing.

Why Cap and Trade is Bad News for Our Climate’s Future

There are a number of fundamental problems with cap and trade systems that are deeply embedded within the policy or its likely implementations, which suggest that working towards alternatives, even if they too are imperfect, is preferable. Remember, we do not have as many shots as we would like to deal with this problem, perhaps only one or one and a half, so a decades-long experiment with third-best policies is a foolish game. As Bill McKibben points out in a recent article, we cannot negotiate with non-human nature, unlike some other areas of policy.  So we need to put in policies that are either “right” or that do not install roadblocks that would stand in the way of better solutions.

  1. Cap and trade puts a newly formed financial derivatives market (the carbon permit market) with all its potential for boom and bust cycles and manipulation by powerful and unaccountable players, in a position to distort the real market for low-carbon technology and land-use changes; the stimulation of this real market is the reason for its existence in the first place. Within the fabricated permit market, the profit-seeking activities of permit traders from the financial markets and industry will be able to exert a substantial amount of unintentional control over the real technology choices and solutions implemented to curb our emission and sequester carbon. These traders, as do all traders, have a vested interest in opacity, price variability, and information asymmetries that would enable them to achieve the highest profit levels for their firms. Permit trading may offer some of the highest returns on investment in a cap and trade-dominated climate action world, so financial players will defend these profit streams with all the considerable means at their disposal. These are the most likely candidates for the “Greek raiding party” in the belly of the Trojan Horse, though climate activists and bureaucrats wedded to cap-and-trade are co-responsible for opening up the “citadel”.
  2. As trading looks to be one of the more profitable areas of the carbon business but in itself does not cut emissions, the incentives in the policy are misaligned: the most profitable business within a carbon policy framework should be those lines of business that cut the most emissions either through selling new technologies or processes or implementing them. An unfortunate echo of the go-go 90’s in which it was conceived, activity of trading is given a role far beyond any real value it offers.  On the level of businesses with real polluting assets, cap and trade will also reward those economic actors who are better permit-buying “game-payers” rather than those companies that invest most in emissions reductions.  This type of reward structure has no place in climate policy.
  3. Non-cap-and-trade policies that determine a fixed price for carbon have the advantage of having as an “output” an acknowledged decision-making tool (a monetary amount) that is already historically integrated into every economic transaction.  In permit trading, permit prices are only applicable to large economic actors and have only a “reflected” (and variable) monetary price after the net costs of the cap and trade outcome for that economic actor have been integrated into the pricing of their goods and services.
  4. A variable, uncertain carbon price that arises from market fluctuations and artifacts of the permit auctioning and trading system is not a clear, easily quantifiable incentive for firms and other real economic actors to make the long-term investments in capital equipment required to cut carbon emissions. A predictable carbon price (in the form of a tax or fee) over the long-term, albeit steeply increasing, would provide a much better incentive to make long-term investments that pay off over years. The “net present value” calculations that are the bedrock of investment decision-making depend on the projection of costs and benefits out into the future, which is nearly impossible using the rapid fluctuations and uncertainties of a carbon market.
  5. The salespeople of cap-and-trade claim falsely that the system gives policymakers “certainty” in terms of the amount emitted as compared to a price instrument like a tax/fee.  As the study of  existing cap and trade systems shows this certainty is illusory and gives leaders a false sense of security.  To get this type of certainty in a cap and trade system, regulators would have to engage in some very harsh and disruptive administrative actions, like shutting down a power plant during the last 3 months of a year if its owners ran out of permits.  Alternatively, the owners of the power plant could “borrow” permits from the next year’s allotment, only to create a direr threat for the next year, but the cap for the current year would have been broken.  Again this is punishing players for not playing the permit “game” as smartly as others though not necessarily being the gravest offenders in terms of carbon-inefficiency or overall emissions.
  6. Buying permits from other firms at a higher cost will impose an undue burden on companies or organizations that need to scale up their operations and increase their emissions in the middle of a year in response to an increased demand for their products.  A carbon tax will have no such punitive effects for unplanned growth as its cost will remain constant throughout the year and per unit produced.
  7. The carbon market does not differentiate between upstream and downstream emissions mitigation. “Upstream” means at the source of emissions, while “downstream” means either increasing efficiency of carbon-emitting energy use or absorbing emissions via land use changes. The efforts to make carbon emissions reductions appear as cheap as possible have tended to emphasize downstream solutions or projects in developing countries. However ultimately the main solution to slowing global warming is to eliminate emissions upstream which is currently more expensive, though downstream mitigation is always going to be necessary as well. A carbon policy that addresses upstream emissions immediately is preferable to one that waves a hand of resignation at business as usual in power generation and transport fuels because of initial cost issues.
  8. Cap and trade, because of its complexity, indirection and somewhat mystical faith in markets, has become the lingua franca of the climate action community and in so doing has shut down that community’s ability to critically examine the instrument itself or alternative, more effective instruments. The collective mental bandwidth that this instrument occupies has helped it to “suck in” many of the good intentions and attentions of politicians and activists, drawing their efforts away from other measures.
  9. Cap and trade obscures the vital role of government leadership, responsibility, regulation and direct investment from the public, the climate action community, and the leaders of government themselves. The successes of cap and trade systems such as they are, depend on either external factors independent of policy (economic downturns, low-sulfur coal deposits) or governmental actors setting stringent targets, operating the permit auction and trading system, and enforcing emissions goals. Yet, cap and trade’s sponsors and advocates continue to promote the fallacy that government is only playing an indirect role in its workings, as if this were a strength of the program. According to most of the expectations that have developed about government over the past millennium or so, there’s nothing wrong with governments taking a leading role in averting one of the greatest calamities we have ever faced. Government is the only institution that can represent and press for the realization of our society’s intention to save itself and the climate via implementation of low-carbon technologies and abstaining as a society from using up fossil fuels all at once. Attempts to hide the role of government paradoxically reinforce the position of advocates of a smaller government who can then point to the attempt soft-pedal as supporting evidence for their claims that government, especially “Big Government”, is “bad”. An honest assumption of responsibility by government would enable clearer, more transparent and more decisive policy moves and educational efforts about the dangers and opportunities for taking a sustainable path to economic development associated with climate change
  10. Instituting a cap and trade system because we, pro forma, must put a policy called a climate policy in place now or by December’s Copenhagen climate conference is worse than delaying a few months or a year to put in a better policy once our leaders have examined the alternatives with a more complete understanding of where they are going. The cap and trade systems now and soon to be developed already create considerable institutional and bureaucratic inertia and their own set of interest groups which are not so much incentivized to cut carbon emissions but to manage and justify the cumbersome system.

Any policy will have its strengths and weaknesses but cap and trade creates an economic, social scientific and political lattice-work at a distance from or interfering with the actual climate tasks ahead of us while blocking the way to better climate policy.

[In part 2 I will highlight what I think is the “fundamental challenge” of climate and energy politics and policy, look at the generic tasks that climate and energy policy is supposed to accomplish and suggest alternate route(s) that are more practical and will be infinitely more effective than cap and trade]

The Renewable Electron Economy XIII: Valuing Energy and Energy Services February 19, 2008

Posted by Michael Hoexter in Efficiency/Conservation, Energy Policy, Green Marketing, Renewable Energy, Sustainable Thinking.
Tags: , , , , ,
18 comments

The events of December when the US Congress dropped an extension of the existing tax credits for renewable energy from the 2007 energy bill have highlighted the need for the renewable energy industry to take a different tack in the area of policy support and marketing strategy. The importance of support for renewable energy is key, as tax breaks have stimulated investment in wind, solar, and geothermal energy in the years that they have been in force, yet there is a dramatic fall-off in new project starts when the tax credits have elapsed in 2000, 2002, and 2004. The current tax credits may be revived but their spotty, on-again, off-again history points to a fundamental problem of a lack of consistent, dependable support for renewable energy in the US. The tax credits were fairly easy to cut because they are a relatively indirect subsidy, though the oil and gas industry with a much stronger lobby also have benefited from indirect (and direct) subsidies. The more indirect the subsidy, the more difficult it is to build public support for re-instating that subsidy and the more dependent on the informal power of lobbying. In the instance of the 2007 energy bill, the oil and gas companies won one more round, even though these large energy conglomerates have started to develop side-lines in renewable energy.

The “Cheap Energy Contract”, the society-wide social and political contract that is still in effect in the US and Canada, makes both overt and hidden subsidy a necessity. In the age when oil and natural gas was “easy” and geopolitical strains had not yet emerged around Middle Eastern oil reserves, subsidy to oil and gas companies may have been welcome to those companies but probably not necessary. Now, with skyrocketing global demand for energy, oil and gas subsidies reduce risk for Big Oil, allowing for record profits to continue to roll in while oil prices remain high but still not yet at politically unacceptable levels. Soon the guarantee of cheap energy may no longer be able to be sustained with oil and gas, if market forces push the price of these resources still higher. The Iraq war can be taken partially or in its entire financial and human cost as a failed attempt at an oil subsidy, as it is unlikely that the war would have been started if Iraq did not sit on top of some of the largest oil deposits.

Those who insist on a “free” totally unregulated and unsubsidized market in energy believe, but have never demonstrated, that energy would be less expensive without government intervention or aid. Of course, some government subsidies go directly to a private company’s bottom line but a) our economy is based largely on the profit motive so this would apply as well to the oil industry and b) the services or funds that government provides would cost these private firms a lot more on the private market and therefore would lead to still higher oil prices. The low price of fossil energy subsidizes our most important commodities including food; the recent hike in food prices is partly attributable to rises in energy costs. Presidents Bush and Reagan never seem to have allowed their championing of unregulated markets to interfere with oil subsidies.

Energy and Human Use

Fundamentally, for human beings, there are two types of energy: energy that people can eat and energy that people don’t or can’t eat. Analysts of the social aspects of energy distinguish between exosomatic and endosomatic energy: endosomatic energy is what people can eat while exosomatic energy is the energy that is used outside the human body, either by work animals or machines to achieve some desired end. (“Somatic” = relating to the human body; “endo”= inside; “exo”=outside).

We use the word “energy use” in modern societies to refer to exosomatic energy use. There is a pretty tight correlation between the level of economic development and the amount of exosomatic energy used: for instance, the richest country in the Western Hemisphere, the U.S., uses about 30 times more energy per capita than Haiti, the poorest country. While there are satiation mechanisms for endosomatic energy which most of us have from birth (we stop eating when we are full), we have no internal limit with regard to the use of exosomatic energy. This lack of an internal limit on the use of exosomatic energy has not become a major issue for us until we came to recognize in the last couple decades the relationship of fossil energy use with climate change.

As mentioned in the post in this series on the electric farm, exosomatic energy use enables a geometric increase in the power to do work that individuals can exert. In agriculture, the use of fossil-fueled tractors and harvesters, enables a single farm worker to support 40-50 people in the US with food when at most a single worker in agriculture might be able to feed just a few people on his or her muscle power alone. A driver of a massive off-road diesel dump truck like those used in mining can carry more ore in a day than perhaps a few thousand people could. The electronic tools of the Internet, fueled by numerous power plants, allow an individual to communicate simultaneously with thousands or even millions of others within a few minutes. As Tad Patzek has observed, excess exosomatic energy can turn any of us into an everyday superhero, which is for many of us, an attractive prospect.

The Low Valuation of Energy

If (exosomatic) energy, in combination with technologies that can convert that energy to useful work, turns us into superheroes, wouldn’t this be a highly valued product?

As it turns out, not so much, as being a “superhero” is part of the expectation of our working and home lives in developed countries. Furthermore it is usually the energy conversion technology that gets all the glory, the car, the train, the mobile phone, rather than the energy resource itself. Energy use is not the focus of the activities we do: we don’t say “oh goody! I’m using a whole bunch of energy now!” Something like 80% of exosomatic energy in the societies of the world comes from fossil sources. Cheap fossil energy subsidizes all other activities in advanced societies. We expect to be able to travel at many times walking speed and to do lots of work with little effort on our part. Furthermore, most crucially, the price and availability of the endosomatic energy that we need, food, is highly dependent on energy; so of necessity all non-agricultural economic activity is dependent on the low cost of energy.

Energy then is part of the “frame” of economic activity and even more than that the “frame” of the frame of economic activity (enables plentiful, affordable, and varied endosomatic food energy which frames all economic activity). Just as we don’t pay much attention to the frame of a picture, most of us don’t pay much attention to energy. As an example, at this moment I am not paying attention to the electricity being consumed by my computer but instead focusing on the words I am writing. I am also not hesitating to go back and revise or rewrite something (I don’t blog in stream of consciousness…sorry) for fear of using more energy, the attitude of most computer users. In contrast to electricity, petroleum prices in the US are now at levels where obliviousness to the cost of energy is no longer as common as it once was.

High Per Capita Energy Use and Social Inequality

One of the byproducts of the North American way of using and valuing energy is that the lifestyles of a majority of the population are highly dependent on cheap energy. People can live in larger houses with larger yards if they are able to travel longer distances for less money; they can also afford to heat and cool them using the relatively inefficient devices and methods in our current building stock. Long commutes are a burden of those residents of high cost urban areas with moderate means who wish to own homes. Rural life in widely dispersed farms and farm towns is viable and bearable because of very high levels of petroleum use and the readiness to travel hundreds of miles on a regular basis. In addition to work, what many of us do for fun and leisure often is highly dependent upon petroleum or cheap electricity (monster trucks, airplane flights, power boats, game consoles, computers, plasma TVs). Partial exceptions to this style of life can be found in the highly concentrated urban areas of the Eastern Seaboard, though immediately adjacent are suburban areas where high per capita energy use is typical. Furthermore cultural and real estate trends are now placing a higher value upon urban living, pushing the middle classes and poor out of the most vital urban areas to the suburban and exurban periphery, and more dependence upon cheap energy.

It is no wonder that energy pricing is politically sensitive though most policymakers favor moves that attempt to minimize energy costs over the short term rather than provide long-term solutions.

The Ethical Valuation of Energy post Carbon

In contrast to the low economic valuation of energy, the discovery of the negative externalities associated with fossil fuel use, i.e. carbon emissions and warming, have led to energy use becoming one of the key political and ethical issues of this new century. Now the avoidance of using fossil energy and the installation of renewable energy generators has developed a high moral valuation. Crudely stated, there is now “good” and “bad” energy use. While this valuation is subjective, it is very widely held and has inspired numerous pricing mechanisms that either tax fossil fuel use or increase the revenue accorded clean energy as a way to promote the expansion of renewables. Carbon trading markets have arisen as a means of instantiating and, with legal backing, enforcing this moral valuation in the arena of economic exchange.

The newness of the higher valuation of energy use, in the negative, has not yet led to cultural attitudes in the West that show a positive respect for energy use. We do not yet treat gasoline or electricity as precious, nor have we developed the analogue of cultural rituals that show respect for material and natural bounty that one finds in less industrialized cultures or in our own religious observances before eating food.

The Culture of Energy Efficiency and Energy Conservation

We have found at least a partial substitute for cultural rituals that re-value energy or high energy prices in the movement towards greater energy efficiency and energy conservation that has grown in fits and starts since the 1973 Oil Crisis. In the United States, California has been the standard bearer, with state policies since the late 1970’s that at least in the electricity and natural gas sectors have made energy efficiency a requirement and a revenue center for utilities.

While energy remains somewhat cheap, energy efficiency has again become a virtue as well as a way to save money as concern about global warming grows and carbon pricing is anticipated. Cultures with higher energy costs have already built some degree of energy efficiency into their building and transport systems, but the moral valuation of energy efficiency may lead to more aggressive, pre-emptive moves to cut energy costs.

Analysts usually distinguish energy efficiency that involves installing devices that do the same work using less energy, and energy conservation, which means altering end use activities to save energy. For a time, in the 1980’s and 1990’s in areas without binding laws or high energy prices, energy conservation fell out of favor, though now cultural re-valuation in the shadow of global warming has led to an “up-valuation” of energy conservation in our cultures. Large energy users are increasingly being paid to become involved in demand response programs in the overburdened electrical system where energy use is turned down in response to system demands or automatically via pricing signals. Energy conservation is an attempt to invent something analogous to a satiation mechanism for our use of exosomatic energy.

The Sustainability Criterion

In addition to carbon emissions, in the last couple decades sustainable use of energy resources has also emerged as a value. To use energy in way that doesn’t draw from exhaustible resources or endanger the livelihood of future generations is a new and fairly rigorous criterion. Renewable energy, of course, is supposed to satisfy this criterion, while nuclear energy does not.

Energy: Commodity or Segmented Market?

Until the emergence of concern about carbon emissions and sustainability, energy has been viewed as a commodity, i.e. a good of low, uniform value affordable by most consumers. The opposite of a commodity market is a segmented market, which can contain commodity products at the low end, branded mass produced products, and customized products and one-offs, some of them handmade. The latter types of products can sometimes be “premium” products that can command larger sums for their greater quality or functionality. The uniformity of energy products has additional usefulness in that it adds value to end use devices that can be used across a broader range of situations. Electricity and crude oil have been treated as commodities though refined petroleum products allow some limited differentiation and branding. Now, there is an emerging trend towards a segmented market, as energy is being divided into “clean” and “dirty”, “sustainable” and “unsustainable” energies.

As this series focuses on electricity, the new differentiation among types of energy refers to differences between electric generators and not between energy carriers: we are still dealing with electricity of a particular voltage, frequency, etc that drives the same machinery for the end users/buyers. While historically pricing and valuation of electricity did not include consideration of sustainability or environmental impacts, we are rapidly working on ways where these impacts are put into the value equation.

If one generates electricity using a sustainable, clean method, does one then have a premium product or simply an expensive means of generating the same commodity? By avoiding negative externalities in the present (carbon emissions) and creating a sustainable technology (benefit to future generations), while generating electricity, greater social benefit is created. By creating a premium product out of this type of generation, a portion of this greater benefit can be recognized by and compensated for in a higher price.

There are currently two methods of segmenting the electricity market in favor of renewables as premium products, one focused on the retail end and the other on the wholesale end. On the retail end, Green Power Marketing is a largely voluntary system that creates a parallel market to the conventional market for electricity. Each MWh of cleanly generated electricity is issued a Renewable Energy Certificate or REC, which can be traded and sold to those who want to support or are required to support renewable power generation. Renewable Portfolio Standards for utilities create a market for RECs, as do carbon offset programs and voluntary Green Power purchases by ethically motivated individuals and organizations. REC markets and RPS policies are the renewable energy programs found in most of the United States, some European countries.

Segmenting the wholesale markets, some countries and regions have implemented feed-in tariffs that set a menu of premium wholesale rates for renewable energy generators, that allow for recovery of costs plus a reasonable profit. Feed-in tariffs are tailored to specific technologies and are meant to allow renewable technology companies to gain economies of scale by stimulating market demand for their technologies. Feed-in tariffs mix in with existing electric rates, leading to increases of a few percent a year in the total cost of electricity. Implemented most successfully in Germany and Spain, feed in tariffs have been the most decisive instruments to spur the increase of renewable electric generation as they are simple and reduce finance costs and project risk. Feed in tariff laws are now being considered in Michigan, Minnesota, and California, which already has a very limited feed in law on the books.

Future of Valuing and Pricing Energy

If we are serious about reducing greenhouse gas emissions and developing a sustainable energy system, we will need to both increase our energy efficiency by a large factor and also switch over from fossil to renewable generators at a fairly rapid pace. Placing a higher value on energy, either planfully or forced by necessity when fossil fuel prices rise, is the most likely route to building a clean energy system for ourselves and future generations. A segmentation, either at the retail or the wholesale end (or both) will help drive economic actors towards making the investments and purchasing decisions that favor cleaner, more sustainable energy over the fossil energy that is still the norm. This “New Energy Contract” is yet to be written but it will be no doubt a topic of discussion for years and decades to come.

Energy and Materials Efficiency: Shortcut to Sustainability or Postponing Hard Choices? February 19, 2007

Posted by Michael Hoexter in Efficiency/Conservation, News and Events, Sustainable Thinking.
Tags: , , , , ,
1 comment so far

News of last few weeks points to a building consensus in the U.S., historically the home of cheap energy and profligate energy waste, that energy efficiency is not only a good thing but it is the next good thing. President G.W. Bush, not the most consistent or far-sighted advocate of green technology, has ventured in the 2007 State of the Union address that CAFÉ standards might be raised to increase fuel efficiency, albeit in a not particularly aggressive way. Bush, in subsequent remarks, has trotted out his plans to increase our energy efficiency primarily as part of the effort to reduce foreign entanglements but also, in a first for his Administration, to deal with “climate change”. Almost any business leader who ventures to talk about climate change and corporate responsibility will now cite energy efficiency as one, if not THE, prime strategy for addressing the emissions of greenhouse gases. There is now a storm of marketing efforts in the home building market pushing the efficiency aspect of materials, systems. On a personal note, I am currently working on a project related to energy efficiency in commercial kitchens, which I will discuss in a later post.

In the catalog of the aspects of sustainability I created (blog posts of October 10th and 12th), I placed what I called “Efficiency/Conservation” as the 4th most central aspect of ecological sustainability:

  1. Balanced exchange between humanity and nature
  2. (Holistic) Systems thinking (“everything is connected”)
  3. Long Time-horizon/Responsibility for the future
  4. Efficiency/Conservation
  5. Greener Innovation and Invention
  6. Fairness/Equity
  7. Biomimicry and Biophilia
  8. Linking and Valuing the Local and the Global

As a practice, particularly on an organizational or corporate level, energy and materials efficiency takes on a much larger role, as they are concepts that can be measured and practiced on a day-to-day basis. The potential measurability of efficiency is an advantage for its usage in regulations, and establishing attainable social and corporate goals.

Though the central concepts in sustainability in my catalogue, “Balanced Relationship with Nature” and a “Holistic Systems View” of life and work, may yield fundamental insights into what is or isn’t sustainable on a global scale, Efficiency and Conservation have a powerful ally from the world of contemporary business and economics: Efficiency is one of the central characteristics of a profitable enterprise. Businesses and other organizations responsive to a purpose or goal have priorities that rival efficiency in importance but it is near the top of the list.

In business, efficiency is not solely energy and materials efficiency but it is also time, labor, and cost efficiency. These efficiencies can compete with one another in some projects and project areas but can also work together with each other in other areas and at other times. Time efficiency often necessitates the use of energy intensive means of transporting goods, like the use of airfreight or air travel. Materials efficiency might mean manual separation of waste materials and therefore not be as labor and cost efficient as old-fashioned waste removal. Sustainable businesses will need to balance the costs associated with raising the priority of material and energy efficiency over other competing efficiency goals.

Measuring Efficiency

Efficiency, unlike “balance with nature” or “holistic thinking”, can be measured fairly easily, especially when describing a machine or fairly simple physical process. Efficiency is sometimes used as an umbrella concept for the related concept of efficacy, which describes whether and how much of a desired effect is produced with a given input.

In this case, the units do not have to be the same, so we can get familiar terms like “miles per gallon” or, in Europe, “liters of petrol per 100km traveled” (which flips the equation on its head as less liters is more efficacious than more liters).

A stricter definition of efficiency in scientific and engineering terms measures the input and output in the same units (energy units usually). If the input and output are measured in the same units, you are able to determine the percentage efficiency of the system or device by multiplying by 100.

In this case, the efficiency of an energy transmission and/or conversion device can be measured in terms of useful energy or work that emerges from the system. Efficiency in the scientific/engineering sense can never exceed 100% as matter and energy can never be created but only transformed. An efficiency of 80 or 90% is usually very desirable though it depends on the context and the perceived value of the outcome.

With materials efficiency, there is currently less publicity than with energy efficiency as it seems less central to the looming climate crisis. Materials efficiency also varies more from one application and economic sector to another. A multidimensional measure of materials efficiency might include the following aspects: percentage of new material, percentage reused/recycled material, water used in production and transport, percentage organic or non-toxic production process, proximity of material origin (really closer to energy efficiency and other concepts). but lately more attention has been paid to the amount of water required to grow crops or other desirable outcomes

When we start to look at more complex processes that involve people and a complex set of variables, measuring efficiency/efficacy becomes more complicated and diverse. Many analytic instruments in economics and finance are trying to get at efficiency/efficacy using monetary and other variables as part of the equation.

Efficiency and Maximizing Economic Utility

“Utility maximization” is economists’ best description for what drives economic activity: the compound effect of human desires and needs tempered by their varying ability to be realized in any given situation. “Utility” is the black box of economics, describing what people want from each other and the earth and how they push forward in trying to get some of what they desire realized. The word “utility” is adopted from the classical utilitarian philosophers who founded the economic profession by theorizing about and eventually studying what drove people to work and trade with each other. Economists avoid where possible defining what utility is and instead accept it as a given.

The measurement of efficiency also leaves out of the picture, evaluative judgment about what is desired. “Useful work” or “effectiveness” are accepted as givens or defined by others. The torque provided by an engine or motor or the heat provided by a furnace is the purpose for constructing these gadgets in the first place, so it is fairly non-controversial to accept the output of torque or heat as the one desired and desirable outcome for these devices. Efficiency then is one route to utility maximization, especially when the costs of that maximization are factored into the ultimate utility equation.

The agnostic nature of efficiency with regard to ultimate ends meshes well with businesses’ ultimate goal to serve the ends of their customers and stockholders and not to exercise evaluative judgment about those ends. While inspiration and creativity are important in ultimate business success, efficiency in execution is a prime pre-occupation for departments as diverse as finance and operations, contributing a great deal to ultimate success and competitiveness.

The Paradox of Efficiency

Increasing materials and energy efficiency then sounds like a paradise for a greener sustainable economy that is not too unlike our current one. By increasing our energy and materials efficiency we can then continue to serve an unlimited growth in (economic) utility for growing numbers of people throughout the world.

But wait…there is a well-established literature that has found that rising efficiency does not slow consumption of energy or material resources. Called the paradox of efficiency or the Jevons paradox after 19th century economist William Stanley Jevons, it seems that increased resource efficiency lowers the cost of a good or service and then people use it more. Examples include the increase in jet fuel consumption despite rising airplane efficiency as well as the steady increases in fuel consumption in the US over the last few decades despite overall efficiency gains in engines. Some advocates of sustainable transport planning are even opposed to instituting efficiency standards for automobiles, instead seeking to limit demand by increasing the cost of automobile use through congestion charges, fuel taxes, automobile insurance that is pro-rated for automobile usage.

Does a greener economy entail then a limitation of demand, tinkering with utility’s “black box”, to stop people from eating up the planet with their urge to consume? Is an emphasis on efficiency too easy, encouraging a postponement and a devaluation of the hard choices we need to make between essential, sustainable economic activities and frivolous, wasteful ones?

Efficiency AND….

As a strategy in and of itself, increased materials and energy efficiency is insufficient to arrive at a sustainable economy. Still it is an indispensable tool AMONG OTHERS for to help us to create a more sustainable society. Increasing efficiency is about eliminating wastefulness, one of the prime characteristics of an unsustainable economy.

However, increased energy and materials efficiency is not a panacea…the paradox of efficiency shows us that left by itself efficiency only serves to cheapen goods and services that then boost overall consumption on a macro-economic level, especially in a world where the vast majority of the world’s population is now hoping to enjoy the luxuries now restricted to the wasteful few in the US and other industrialized countries.

In the area of energy, increased efficiency CAN potentially lighten the burden which a new cleaner energy infrastructure centered on renewable energy sources like wind, solar, biomass and ocean energy would power. Efficient energy conversion devices (like more efficient motors and heat sources) and regulating and reducing per-person and overall energy demand will allow us to reach a carbon neutral economy sooner. In the area of materials, lower materials use per “unit” utility will allow people to gain similar or greater satisfaction of their wants with less impact on the world as a whole.

Beyond decreasing the overall cost to the planet of each of our individual satisfactions, even as we grow in number and in expectations, we will need to continue developing new, cleaner sources of energy and materials. An efficient use of gasoline or other fossil fuels still increases overall carbon emissions if increasing numbers of people hop into cars that run more cheaply. Shifting to an electricity based economy powered largely or entirely by renewables, would lead to massive decrease in our carbon emissions and dependence on fossil fuels. Efficiency in and of itself cannot shift use to such an economy but, as it turns out, useful work performed by electric devices is in most cases more efficient than the same work done by heat engines fueled by fossil fuels. The shift to renewables and electricity requires a paradigm shift and to some degree a power shift among industry sectors and activities.

Energy efficiency is a point where many can agree but we may also need to step into more controversial areas that involve re-thinking what we value and demand from others and from the natural world. More on this in future posts.